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NATTONAL AERONAUTICS AND SPACE ADMINISTRATION

TECENICAL NOTE D-1531

THE MAGNETIC FIELD OF A LINE CURRENT IN A
TRANSVERSE RAREFIED PLASMA STREAM

By Albert G. Munson

SUMMARY

The steady-state flow of an infinitely conducting, rarefied, neutral
plasma past a line current 1s considered. According to the Chapman-Ferraro
theory, the plasma is confined to the exterior and the magnetic field to
the interior of a cayity, the boundary of which is a thin current sheath.
Within these restrictions the problem is solved exactly by a method similar
to the hodograph method of incompressible fluid dynamics, and the magnetic
field inside the cavity is presented. The boundary so cbtained agrees with
that previously given by Hurley who used a different method. Also, the
magnetic field inside the cavity is determined by means of an approximate
solution for the cavity shape previously obtalned by Ferraro. Results of
the approximate and exact solutions are compared.

INTRODUCTION

Chapman and Ferraro, in studies of the connection between solar
activity and geomagnetic storms, have considered the idealized problem of
a rarefied neutral plasma stream interacting with a permanent magnetic
field. Under these conditions the permanent field does not penetrate the
plasma but has the effect of producing a hollow or cavity in the plasma.
The steady-state formulation of this problem is summarized by Dungey
(ref. 1). Several investigators have applied this formulation to the
interaction of a plasma with a two-dimensional dipole (refs. 2, 3, 4).

The recent evidence that a ring current flows in the magnetosphere
has gilven impetus to the study of the Interaction of a plasma with a two-
dimensional line current (see ref. 5). Ferraro (ref. 6) and Hurley (ref. 7)
have initiated such studies recently. The former obtained an approximate
expression for the boundary between the stream and the magnetic field, and
the latter an exact one. The present paper applies the formulation of
Hurley and Ferraro to the exact and approximate magnetic fields inside the
cavities. Inasmuch as the approximate formulation of Ferraro has been
applied to three-dimensional problems by Beard (ref. 8), and Spreiter and
Briggs (ref. 9), extensive comparisons of the exact and approximate
solutions are made.



FORMULATION OF THE PROBLEM

It is considered (ref. 1) that the particles in the stream travel up
to the boundary of the hollow in straight lines and are in effect reflected
specularly. In so doilng, each particle imparts to the surface twice its
normal component of momentum. Thils change in momentum is balanced by the
magnetic pressure at the boundary surface. One thus obtalns

Hg2

= po cOs2q (1a)
8x

Po = 2mv2 (1b)

where Hg 1is the total magnetic field at the boundary surface; m, n, and
v are the mass, number denslty, and veloclty of the positive ions in the
undisturbed stream; and a 1s the angle between the stream and the normal
to the surface as shown in figure 1. Because no part of the surface may
be shielded from the stream, cos a must lie between zero and unity.

The condition that the magnetic field does not penetrate the plasms

means that at the boundary surface the magnetic field must be tangent to
the surface, that 1s,

(2)

gL

where x and y are two-dimensional rectangular Cartesian coordinates
(see fig. 1) and Hy and Hy are the x and y coordinates of the magnetic
field.

The equations to be satisfied inside the cavity are:

oy | 3y
== =0
> 5y (3)
and
OHy _ Ofx _ 0 (&)

ox dy



The field components must approach the appropriate values at the line
current, that is,

21 .
H: PO i
X = (5a)

- — (5b)

where r2 = x2 + y2 and I 1is the current carried by the wire. In the
above the current is considered to flow out of the paper, and 1s measured
in abamps, and the fleld is measured in gauss.

THE EXACT SOLUTION

Predictions as to the nature of the physical problem can be made once
equations (3) and (4) have been solved subject to the boundary conditions
of equations (1), (2), and (5) (with the restriction that cos a is
greater than zero). The main difficulty in obtaining a solution to the
equations In their present form is that conditions (1) and (2) must be
satisfied on an unknown boundary. To state thls another way, the boundary
must be determined so that (1) and (2) are both satisfied on it. It will
now be shown that, when independent and dependent varlables are inter-
changed, the boundary becomes known. Before this 1s done, however, it is
convenient to introduce a potential function.

If we Introduce the complex function W, that is,
W=2¢0¢+ iy

where ¢ 1is a potential function and V¥ a stream function, and define

3% _ dy
Hy = — = (6a)

* 7 % dy

1) Y
Hy = =—= = - (6b)

v oy ox

equations (3) and (4) become

§2_¢ + @- =0 (73)

ox2  oy2



By |, By _
e a2 ° (70)

Equations (6) are recognized to be the Cauchy-Riemann equations; thus W
1s an analytic function of the complex variable z = x + 1y (see ref. 10).
Similarly, equations (3) and (4) are the Cauchy-Riemann equations for the
complex function H* = Hy - iHy, and H*¥ 1s also an analytic function

of the complex varlable z. Equations (7) can be combined into

W, W _ (8)
ox2 oy2

A result of complex functlion theory which can be shown by direct substi-
tution (making use of eqs. (3), (4) and (6)) is that if x and y are
replaced by Hy and Hy, equation (8) becomes

2 2
o<W + oW _ 0 (9)

MZ  OH2

The boundary conditions, equations (1) and (2), will now be combined into
a single relation involving only the component of the magnetic fleld.
From figure 1

—cot a =& = gx (10)
X

Alternatively,

cos a = by (11)
JH2 + H 2

Substituting into equations (1) and simplifying, we have
B + By? = #(8xp,)" 2 By (12)

where the positive sign 1s chosen because Hy is always positive on the
boundary. Equation {12) then becomes

He? + [Hy - (2mpy)1/2]1% = 2mp, (13)



This is the equation of a circle as shown in figure 2. The condition
stated in equation (5) can be expressed in terms of W and the magnetic
field as follows. Near the wire

W=+ -2iI log z (14)

where I 1is the current carried by the wire. Equation (5) in complex
notation is

- - 81 (15)

Substituting into (14) we have, for large H*

{H*
W - 2iI log — 16
g 7 (16)

The boundary value problem has now been transferred into a fixed boundary
value problem. It is now necessary to seek a solution to equation (9)
which will satisfy the condition that the field is tangent to the curve
given by equation (13) and will satisfy (16) for large H*. It will be
recognized that this is analogous to a circular flow which at infinity
approaches a vortex flow.

Tt seems deslrable, before obtalning this solution, to polnt out
aspects of the method which apply to other two-dimensional problems. For
any enclosed current system, such as a dipole, a relation, such as equa-
tion (16), can be obtained relating the magnetic fleld to the complex
potential W. Egquation (13) applies to any two-dlmensional problem to
which (1) and (2) apply. In more complicated problems, however, it is
not possible to choose a single sign in this equation as was done above.
The boundary therefore becomes a circle plus arcs of another circle. Thus
any two-dimenslonal problem can be reduced to a fixed boundary value prob-
lem in the "magnetic" plane. It may happen, however, that the mapping
from the physical plane to the magnetic plane is not one to one; that is,
two or more points in the physical plane may map into the same point in
the magnetic plane.

The solution to the present problem can now be written by analogy
with vortex flow, that is,

1/2
W = 2I1 log [iH* - éi@O) ] (17)



Since
— = B* (18)

an expression involving only W and z can be obtalned by solving equa-
tion (17) for H*, equating this to @, and integrating. The result is

dz
1/2 3 s
2= —H 1o R e S - (19a)
(8mp,) 172 b1

or, separated into real and imaginary parts,

2
1/2 -
X+ 1y = ___J£5_7_ log 1+ £§£EQL——— e el cos 2
(8xwo) 172 41 oI
v 2
/2 -
+ (8—@0_)::_ e 21 sin .9_
LT 2l
X
(8mpg)*® ~2T , o
+ 1 ——l‘ll/ tan-1 41 2l (19b)
(8rp, )t /2 1/2 -
° 1+ (87po) e 2T o5 X

Since lines of constant V¢ are field lines, they can be determined if
particular values of V¥ are chosen and 2z is calculated for various
values of @. In particular, the open field line, which is the boundary,
can be determined from
12 4
£§32ﬁl___ e 21 -4 (20a.)
I

since this produces a curve that approaches infinity in the negative x
direction. Substitution of (20a) into (19) leads to



1/2
@%——-— (x + iy) = 8 log <cos %} + 1 1—% (20b)
This is identical to the boundary previously determined by Burley (ref. 7).

The value of the field function at the nose of the boundary (and indeed on
the complete boundary) is from equation (20a)

4T

Yy = =21 log —m——
N (8@0)1/2

(21a)

The difference in the values of ¥ associated with two field lines
represents the maghetic flux passing between them. Therefore the flux
passing between any field line and the boundary is

V=¥ - Yy (21b)

An expression for the components of the magnetic field can be obtained by
inverting equation (17). The result is

-sin 2 cos 2
Hy + 1Hy = 2(8mpy)t/2 21 4+ 4 2l ___ +1]V(22)
i1/2 o L -
(81po) o 2T (8@9)1/2 -
4T 4T

The field lines are plotted in figure 3. The variation of the absolute
value of the magnetic field is indicated by means of ticks. The direction
of the field is, of course, tangent to the field line. Coordinates of the
field lines and components of the magnetic field are given in table I.

It was convenlent to use stretched polar coordinates, that 1is,

_ P 1/2
T = Eg) (x2 + y2)1/2 (23a)
6 = tan™t % (23b)

The components of the magnetic field are expressed as:

Hy = Hy cos 6 + Hy sin 6 (2ka)

Hy = -Hg sin 6 + Hy cos 8 (24b)



THE APPROXIMATE SOLUTLON

If the equation of the boundary field line is known, the problem of
determining the magnetic field inside the hollow becomes a fixed boundary-
value problem; that is, the boundary conditions can be applied on a curve
known beforehand. If an approximate boundary is known, it can be used to
obtain an approximate solution to the problem. It 1s reasonable to suppose
that if the approximate boundary is close to the actual boundary, the
approximate fileld lines will be reasonably close to the actual fileld lines.

Ferraro (ref. 7) obtained an approximate boundary by assuming that
the total field at the boundary is equal to 2f times the component of
the magnetic field of the wire parallel to the boundary. He then used
equation (1) to relate the known magnetic field to the slope of the
boundary. Thils led to a differential equation for the boundary shape.
Ferraro's solution is

£ =17 cotn (25a)
where
X
E = To (25b)
=X 5
1 o (25¢)
Po

and P, 1s given by equation (1b). Ferraro, in his original development,
set Do equal to one half the value given in (1b). For a discussion of
this point see reference 9. Ferraro then determined f by requiring that
the magnetic field just outslde the nose of the hollow be zero. (Since

the boundary is approximate, the field everywhere outside the hollow cannot
be set to zero.) He found that f = 0.68 approximately. It is convenilent
In the present case to determine f so that the approximate boundary
matches the exact one at the nose. This gives

f = 0.6931 (26)

We now regard the boundary as known and proceed to calculate the
field inside 1t. The differential equation for the field lines is

(27)

e

If the components of the magnetic field are known, this equatlion can be
integrated to determine the coordinates of the fleld lines. The components



can be determined in two ways since two boundary conditions exist for the
exact problem. The first is equation (1) which specifies the value of the
field on the boundary. The other is equation (2) which specifies that the
normal component of the field vanishes on the boundary. Assoclated with ‘
the glven approximate boundary and each of these conditions 1s a unique
set of field lines. Therefore two different sets of field lines can be
computed inside the approximate hollow. As mentioned earlier, Ferraro
used equation (1) to determine his approximate boundary. It is therefore
more consistent to use equation (1) in conjunction with Ferraro's boundary
to determine the field lines. The magnetic field is made up of the field
caused by the current flowlng in the wire and that caused by the currents
flowing in the bounding surface. The currents flowing in the sheet can
be determined by applying equation (1). Since the magnetic field outside
the sheet 1s zero (nearly zero in the approximate case) and 1s equal to

(8ﬂpo)l/2 cos o Just inside the sheet, the currents flowing must be such
as to produce a Jjump of this magnitude In the magnetic field, that is,

H [
J:._.S_=-p-—o-cosa,=--I—f—COSQ‘, (28)
Ly 21 o

where J is the current per unit length of the sheet. The Biot-Savart
law can now be used to obtain a relation for the magnetic field induced
by these currents. The result is

nr

o '
zlff v -3
H, = dy’ (29a)
X1 7 g -mb(x-xW2+ (y -y")2

bl
H = _g}_f_ © x - x! dy'
J1 o J o, (x = x1)% + (v - y')?

(29b)

~

since ds cos a = dy, where ds is an element of arc length along the
sheet. The total fleld can be obtained by adding the field of the wire
to equations (28). If equations (25) are used the field components are:

Bx _ 1 [ _-en
(8rpg)*/2  bf |82 + 02

or [ (n - 1")sin2y"'
+?r“f = > dn'| (30a)
- (& sin 7' - n'cos 1')% + (1 - 1'")%sin2n’
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Ay .1 en
(8rpg)1/2 b 8% + 12

oot 1 1
i CIELLRUES ——
e (& sin ' - nlcos 1")% + (1 - 1")%sin2y

The fleld lines can be computed by integrating the equation

dn _ dy _ By (31)
¢ dx Hy

Equation (31) can now be solved by computing Hy and Hy from equations (30)
and integrating numerlcally. The integrals 1in equations (30) are free from
singularities except when the integral curve lies on the bounding sheath.
In that case the denominators of the integrands vanish. Because of this
difficulty, the integrals were split into three parts:

uy

f (n_- n')sin2n’ an’
-x (¢ sin ' -n'cos 1")% + (n - n")sin2y’
l

ﬂ-€
=f (n_-n')sin3y' an’
-t (¢ sin ' - n'cos 1")2 + (1 - n')3sin2y’

T

(n - n'")sin2y"

+ dn' + K
/T:+e (& sin ' - n'cos n')Z + (n - n")2simEn’ | '
(322)
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‘/m (¢ sin n' -~ n'cos *)sin 9’ an
-x (¢ sin n' - n'cos 1')2 + (n - 7")%sin2n’
T]-e
=,jp (¢ sinn' - n'cos ')sin 9’ an’
-x (& sin n' - n'cos 1')2 + (n - n')%sin3y’
(¢ sin ' - n'cos n')sin ' .
+ — . dn' + Kz
l::e (¢ sin ' - n'cos 1')2 + (n - n')%sin2’ !
(32b)
where
n+e
Ky = J[\ (n - nleinfy’ an'  (32¢)
n-e¢ (& sin n' - n'cos 12 + (n - 7")%sin2y’
+€
Ky = an (¢ sin ' - n'cosrnf)sin n' an' (324)
e (& sin 7' - n'cos n*)2 + (1 - 1'")®sin27’
M

The singularities are now contained in K; and Kz. They were then
evaluated approximately as follows: The substitution

" =1n+03

was made in equations (32c and (32d4), and linear terms in & were retalned.
This approximation amounts to replacing the actual boundary in the neigh-
borhood of 7' =1 with a straight segment whose slope 1s equal to the
boundary slope at 1. The resulting integrals can then be evaluated
analytically. Thus K; and Kz were found to be approximately

K, = 1 log(A-§+Be)2+62_ B 4o B(A-8) + (2 + 1)
2(B2 + 1) (A -t -Be)2+e B+ 1 A -t
4B i1 BA-8) -e(B +1) (338)

B +1 A -t
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Ky = B Tog (A -+ Be)Z + e2 1 4an-1 BA - &) + (B2 + 1)
2(B® + 1) (A -t -Be)® +e2 B2+ 1 A -t
- 1 tan'l B(A - g) - E(Bz + l) (33b)
B+ 1 A -t
where
A =mn cotq ' (33c)
B=cotn -—L (33a)
sin2q

Equation (31) was then integrated numerically. An approximate field line
was computed corresponding to each exact field line obtalned previously.
In every case except for the field line starting at the nose of the
boundary, the starting point for the integration was chosen so that the
exact and approximate curves coincided on the positive x axis. When
integration was started precisely at the nose of the boundary, numerical
difficulties arose. It was found, however, that integration could be
started Just inside the boundary. The starting value chosen was 0.99999
times the x coordinate of the nose. Small variations in the starting
point did not affect the resulting fleld line appreciably. Results of
the calculation are compared with the exact solution in figure 4 and are
given in more detall in figure 5. In figure 5 the magnitude of the mag-
netic field is iIndicated by means of ticks. The magnetic field strengths
Indicated on the bounding field line were calculated just inside the
boundary. Numerical results for coordlnates and magnetic field components
are given in table II. As in the exact case it was convenient to use
polar coordinates. They are related to & and n by

£(£2 + n2)1/2 (3ka)

= tan~t <%> (34b)

The components of the magnetic field, Hy and Hg, are related to Hy and
Hy by equations (2k).

T

[s]
!

The magnetic flux passing between the nose of the boundary and any
field line can be computed as follows. From equation (6b)

X
Ew—wi/%u' (35)
AN
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where xy 1s the x coordinate of the boundary nose and x 1is any
point in the field. Substituting from equation (25b) gives

¥ = =LIf J[

N(&@)lm ® 59

The integration was carrled out numerically for each field line computed
and the results are given in table II.

RESULTS AND DISCUSSION

An exact solution for the interaction of a neutral rarefied plasma
stream with the magnetic field of a line current has been presented.
Although the shape of the boundary has been obtained previously, the
magnetic field is presented here for the first time. The method employed
is applicable in part to many such two-dimensional problems. The magnetic
field inside Ferraro's approximate boundary has alsc been determined. I%
follows from a comparison of the boundaries that the numerical value for
f obtained by Ferraro 1s extremely close to the value one obtalns by
matching the approximate with the exact boundary at the nose. From
figure 4 it can be seen that exact and approximate field lines which begin
at the same point remain extremely close together in the upstream portion
of the figure. In the downstream portion the most serious divergence
between pairs of fleld lines is that between the exact bounding field line
and the approximate field line which almost coincldes with it at the nose.
In this case the approximate field line forms a closed curve while the
exact one goes to infinity In the negatlive x direction. Since the
approximate field line is not altered signifilcantly by slight variations
in the starting polnt of .the integration, it is concluded that this diver-
gence 1s not due to a numerical difficulty but is inherent in the approxi-
mation. It can be seen from figures 3 and 5 (or tables I and II) that in
the upstream part of the figure the magnetic field strengths on corre-
sponding fileld lines are very nearly the same. The disagreement in the
downstream part of the figure is due mainly to the divergence of the field
lines themselves.

It has been shown above that the approximate field lines, with the
exception of the one starting at the nose, agree with the exact ones to
the same order (but opposite sense) that Ferraro's approximate boundary
agrees with the exact one. The disagreement of the approximate field
lines with the exact ones 1s a result of the disagreement of the approx-
imate boundary with the exact one and not a result of the numerical
computation scheme.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Aug. 10, 1962
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TABLE II.- APPROXIMATE SOLUTION FOR MAGNETIC FIELD LINES

AND FIEID CCMPONENTS INSIDE SHEATH

. Approximate sheath %_ =0 % ¥ = 0.2430
deg - TR O Ew | | E | B B Hy Er
) i 81pg JBpy 3 8, JBp, T W{?’@g J8npg
o} C.6931 0.9724 0.0000 0.6931 0.9727 0.0000 0.6326 1.0382 0.0000
10 L6960 9621 .0L6s L6961 .9630 .0L68 L6351 1.0304 QU69
20 T06T7 L9372 L0911 L7051 .9365 0922 Bh27 1.0071 0918
30 L7251 8966 .1318 . T20h .8990 .1329 6557 .9693 .1328
[T} 7521 .8h16 L1671 JT426 8516 1712 ET7h2 .g182 L1683
50 7886 L7738 1954 L7728 7853 2001 .6990 .8556 1968
60 8373 L6956 .2155 8115 L7148 L2194 L7306 L7847 R-abad
70 L9003 6093 2064 8588 6277 .2095 L7695 L7043 2240
80 .9818 .5180 2277 L9146 .5527 .2159 .B166 6238 2260
90 1.0877 Labg 2192 L9844 Jh7h1 2139 8732 5427 220k
100 1.2972 3328 L2015 1.0705 .3955 .2018 9408 61y 2070
110 1.4147 zZhslh 1756 1.1760 .3207 181k 1.0202 .3886 .1868
120 1.6746 1659 L1431 1.3036 2530 L1550 1.1119 .3210 L1615
130 2.0510 0976 L1067 1.4551 L1947 1253 1.2148 2625 1331
10 2.6323 L0432 L0697 1.6292 172 L0950 1.3250 2146 L1036
150 3.6257 0052 0366 1.8179 1110 0665 1.4347 i777 L0750
160 2.0001 0858 0413 1.5313 1519 0482
170 2.1392 0711 0195 1.598g 1368 0234
180 2.1923 0662 J ,0000 1.6233 1318 0000
17 = 0.4866 1y-0.9m TV =268
¢l 5759 1.1140 L0000 JB7H1 1.2969 0000 3869 1.5315 0000
10 5780 1.1062 .0k62 4755 1.2893 Nollth:} .3878 1.5241 L0438
20 .58uL 1.0832 .090L. k799 1.2667 0880 3908 1.5019 0859
30 .5951 1.0458 .1309 4a72 1.2301 .1276 3957 1.4659 1248
30 .6105 .9953 L1661 4975 1.1806 1621 .Lo25 1.5173 1588
50 .6308 L9334 L1944 5111 1.1200 .1903 11k 1.3578 .1868
60 6565 8626 2150 5279 1.0505 2109 4223 1.2893 .2078
7 6879 L7847 2250 5481 L9745 2232 4351 1.2145 2211
80 .7256 . TOk1 2277 JSTLT .8950 .2276 4hgg 1.1359 2268
90 L7700 6230 2226 5588 .B1k6 .22k2 RIS 1.0561 .2249
100 B217 5438 L2100 6292 L7358 2136 L4845 9776 .2159
110 .8808 Lh691 .1909 662k L6613 .1967 .5036 .9030 L2006
120 QLES 401k 1668 6576 5932 L1746 5314 8200 .1798
130 1.0173 .3k26 .1394 -7335 .5333 L1487 Hhg7 L7736 L1549
140 1.0896 2939 L1105 7682 4832 1203 5609 7222 L1268
150 1.1582 2561 0815 L7394 Ly37 0906 ST67 681k L0965
160 1.2157 2204 L0534 Bph3 %3153 Relloln 5850 6518 L06kg
170 1.254k 2135 L0263 .BhOS 3982 0302 .5969 6339 0326
180 ) ;.2681 2083 .0000 B L8461 3926 0000 .5996 6279 0000
1. . T i T Lo
TV¥- ,.g579k T ¥ =202 , T¥=4.9336
[¢] 13133 1.8326 0000 2014 2.7151 L0000 078 6.5664 L0000
10 L3139 1.8253 .0L2g L2017 2.7079 .0k16 .0789 6.559h Raills; !
20 3158 1.8035 L0842 2025 2.6866 0817 .0791 6.5387 0789
30 23191 1.76% 1224 .2038 2.6520 1189 L0793 6.5049 L1152
ito] 3235 1.7201 L1561 2057 2.6051 1520 L0795 6.4591 L1478
50 L3293 1.661h 1840 2080 2.5476 1799 0799 6.14028 L1756
60 .3363 1.5038 .2053 .2108 2.4812 2016 .0803 6.3376 .1978
7 - b4k 1.5198 .2193 2140 2.4083 2187 .0808 6.2658 .2138
3] L1536 14419 2260 2175 2.3312 .22k7 L0813 5.189k 2232
30 .3637 1.3625 2252 L2213 2.2523 2255 L0818 6.1108 2257
100 L3TH5 1.2862 2175 2252 2.1741 .2195 L0823 6.0325 .2213
110 .3857 1.205h 2034 .2291 2.098 2070 0828 5.9569 ,2103
120 3970 1.1403 L1837 L2h11 1.9566 1848 L0833 5.8861 .1930
130 L4079 1.0788 .159% 2367 1.966% 1650 L0838 5.822L L1701
140 .L178 1.0264 L131% .2399 1.9127 1371 .08k2 5.7675 .1he3
150 k263 .98k6 .1007 2426 1.8695 1058 L0845 5.7230 L1104
160 4329 .95h1 L0681 2447 1.8379 L0719 L0847 5.690k 075k
170 4370 .9356 0343 L2459 1.8186 L0364 .08Lg 5.6704 .0382
180 4384 19293 .0000 246k 1.8121 .0000 L0849 5.6636 .0000
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Figure 2.- The sheath in the magnetic plane.
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Figure 3.- Exact solution for magnetic field inside sheath.
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